
Synchronous vs. Asynchronous GPU Graph Frameworks
Yuechao Pan, Muhammad Osama, John D. Owens

University of California, Davis
1 Shields Ave.

Davis, CA 95616 USA
{ychpan,mosama,jowens}@ucdavis.edu

ABSTRACT
Recent node-level GPU accelerated graph processing frameworks
have separately chosen synchronous and asynchronous architec-
tures. Which is be�er under which circumstances, and why? We
focus on Gunrock (a synchronous framework) vs. Groute (an asyn-
chronous framework) with 3 primitives on 3 di�erent datasets. We
identify load balance, kernel count, and communication latency
and bandwidth as quantities of particular interest.

KEYWORDS
Graph processing, GPU, Performance Analysis

ACM Reference format:
Yuechao Pan, Muhammad Osama, John D. Owens. 2017. Synchronous vs.
Asynchronous GPU Graph Frameworks. In Proceedings of �e 7th Workshop
on Multi-core and Rack Scale Systems, Belgrade, Serbia, April 2017 (MaRS
2017), 3 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
�is paper focuses on multi-GPU implementations of graph prim-
itives. Synchronous approaches to this problem [3, 6] follow the
BSP model [9] and require a global synchronization between algo-
rithmic iterations. Asynchronous approaches [1, 10] allow direct
GPU-to-GPU communication without a global barrier. In this posi-
tioning paper, we focus on the Gunrock (synchronous) and Groute
(asynchronous) frameworks for GPU graph computation to gain
insight into which framework works the best in which situations.
We show experiments using large real-world graphs, on di�erent
GPU generations, to illuminate performance bo�lenecks and how
they may change over time.

2 ANALYSIS OF SYNCHRONOUS
FRAMEWORKS

�e BSP model that underpins existing synchronous graph frame-
works is a natural �t for the GPU execution model. More speci�-
cally, results output from a streaming multiprocessor (SM) are only
guaranteed to be viewable on another SM a�er a kernel boundary,
which is a hard synchronization point on a single GPU. In general,
BSP approaches on GPUs, and synchronous graph frameworks, are
best suited for large workloads on every kernel launch. Having a
large workload per kernel motivates an implementation focus on
load balancing, a critical optimization when dealing with irregular
workloads like sparse graphs.

MaRS 2017, Belgrade, Serbia
2017. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

However, this approach also has drawbacks. Load balancing
operations are not free and may not justify the cost when working
on more regular datasets. An inter-GPU synchronization point in-
hibits more �ne-grained (and possibly useful) data communication
and may introduce waiting time when workloads are not perfectly
balanced.

Using the BSP model and Gunrock as an example, we summa-
rize the cost of computation, communication, and synchronization
on di�erent graph primitives in Table 1 of our previous work [6].
For Breadth-First Search (BFS), Connected Components (CC), and
PageRank (PR), the communication volume is at most on the or-
der of the number of vertices in a GPU’s local sub-graph, and the
computation is at least on the order of the number of edges of such
sub-graph. As a result, for graphs with large average vertex degrees,
a synchronous framework should achieve good scaling across multi-
ple GPUs. However, we will observe poor scalability for workloads
in which the per-iteration overhead (e.g., kernel launch overheads
and communication latencies) is signi�cant compared to other parts
of the framework, which happens when the per-iteration workload
is too small.

3 ANALYSIS OF ASYNCHRONOUS
FRAMEWORKS

Asynchronous frameworks must run atop a synchronous GPU sub-
strate. One common approach is to launch small batches of work-
loads using many individual kernels, mirroring a continuous data
�ow. Small kernels may not be able to utilize the full computing
power of GPUs, and kernel launches have a few microseconds
of overhead. With small workloads per kernel, load balancing is
proportionally more expensive and may not be helpful.

�e principal advantage of asynchrony is its lack of a global bar-
rier, which allows faster communication: the graph framework does
not need to wait for all the data from its peers before performing
further computation, signi�cantly reducing synchronization costs.
Also because data �ows more freely and in smaller packages, smart
asynchronous algorithms can propagate data more quickly than
synchronous frameworks, and thus allow solutions to converge
sooner, yielding be�er performance on some algorithms such as
PR and CC.

4 EXPERIMENTS
To understand how the frameworks perform on real data, we test
them using three huge graphs (Table 1). �ese graphs have a similar
number of edges, but have a wide variety of graph properties: soc-
twi�er-2010 is a large scale-free social networkwith a short diameter
and a irregular degree distribution; osm-eur is the road network
of Europe, with a large graph diameter, and a very regular degree

MaRS 2017, April 2017, Belgrade, Serbia Yuechao Pan, Muhammad Osama, John D. Owens

0

20

40

60

80

100

120

140

160

180
Time (ms) Gunrock.bfs.soc-twitter-2010

Trans & Sync Time
Comp Time
Other Time

-200

-100

0

100

200

300

400

500

600
Time (ms) Groute.bfs.soc-twitter-2010

Trans Time

Comp Time

Other & Sync Time

0

200

400

600

800

1000

1200

1400
Time (ms)

Gunrock.cc.nlpkkt240Trans & Sync Time Comp Time Other Time

0

200

400

600

800

1000

1200

Time (ms) Groute. cc.nlpkkt240
Trans Time Comp Time Other & Sync Time

Figure 1: Performance of Gunrock (le�) and Groute (right). BFS using soc-twitter-2010 on top, CC using snlpkkt240 at bottom.
Negative timings indicate successful overlap between compute and communication.

Graph |V | |E | D∗ Note
soc-twi�er-2010 21.3M 530M 15 [2], undirected
nlpkkt240 28M 746M ∼ 200 [7], undirected
osm-eur 174M 348M ∼ 22k [5], directed

Table 1: Graphs used for evaluation. ∗We use the avg. depth
of multiple BFS search from randomly chosen source ver-
tices to approximate graph diameter.

distribution (more than 90 percent of vertices have out-degree 2
or 3); nlpk�240 is a graph from a optimization problem, with a
medium diameter and a regular degree distribution.

We also selected three primitives, BFS, PR, and CC. BFS is a
strictly level-synchronous primitive that requires processing at
one depth to complete before starting the next; Soman’s CC algo-
rithm [8] does not have any ordering requirement on the hooking
or the pointer jumping steps, which makes it very asynchronous-
friendly; PR has high tolerance for varying the order of operations,
but for performance, PR does need to accumulate some ranking
changes on a vertex before propagating to its neighbors. We use
the latest version of Groute [1] and Gunrock [4], and GPUs across
4 generations. We summarize performance in Fig. 1.

For BFS on soc-twi�er-2010, a large irregular graph, Gunrock’s
computation displays clear advantages over Groute’s, mostly be-
cause of Gunrock’s load balancing strategies. Gunrock’s compu-
tation also scales nicely across multiple GPUs and di�erent GPU
generations. Gunrock’s communication for BFS is bounded by bor-
der size, and when the time for computation is at least as much as
for communication, the framework can maintain good scalability.
Groute’s asynchronous communication takes up considerably more

time for the large irregular graph, which harms its scalability. �is
comparison generally stays true for other BSP-like primitives on
large irregular graphs.

On the other end of the spectrum, for an asynchronous-friendly
primitive, CC, on a more regular graph, nlpkkt240, Groute’s asyn-
chronous communication shows its strength in keeping communi-
cation volume at a very low level, yielding impressive performance
and scalability. Although Gunrock’s computation still manages to
scale, Gunrock su�ers from communication volume increases re-
sulting from its all-to-all label updates in between iterations. A�er
reaching 3–4 GPUs, the additional cost of communication time out-
weighs the savings in computation time. Gunrock’s load balancing
methods increase per-iteration overheads; synchronization time
becomes a signi�cant component of runtime when the per-iteration
workload is small; together these considerations make Gunrock’s
performance on regular, large-diameter graphs inferior to Groute’s.

5 FUTURE HARDWARE
Technology roadmaps indicate that computing power will con-
tinue to grow faster than inter-processor bandwidth, and that inter-
processor communication latency may not see any signi�cant re-
duction in the near future. �is may require future frameworks
of both kinds to pay more a�ention to reducing communication
cost, especially in not allowing the latency to be a bo�leneck (this
is a particular concern when routing a large number of small data
packets). �e di�erent successes of synchronous and asynchro-
nous workloads in this set of experiments motivates exploring a
hybrid between both models in an e�ort to build a framework that
can run workloads with varying regularity and size on single- or
multiple-GPU con�gurations.

Synchronous vs. Asynchronous GPU Graph Frameworks MaRS 2017, April 2017, Belgrade, Serbia

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the DARPA XDATA pro-
gram (US Army award W911QX-12-C-0059); DARPA STTR awards
D14PC00023 and D15PC00010; and NSF award CCF-1629657.

REFERENCES
[1] Tal Ben-Nun, Michael Su�on, Sreepathi Pai, and Keshav Pingali. 2017. Groute:

An Asynchronous Multi-GPU Programming Model for Irregular Computations.
In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’17). ACM, New York, NY, USA, 235–248. DOI:
h�p://dx.doi.org/10.1145/3018743.3018756

[2] Timothy A. Davis. 1994. �e University of Florida Sparse Matrix Collection. NA
Digest 92, 42 (16 Oct. 1994). h�p://www.cise.u�.edu/research/sparse/matrices.

[3] Hang Liu and H. Howie Huang. 2015. Enterprise: Breadth-�rst Graph Traversal
on GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). Article 68, 12 pages. DOI:
h�p://dx.doi.org/10.1145/2807591.2807594

[4] University of California Davis. 2017. Gunrock:High-Performance Graph Primi-
tives for the GPU. (2017). h�p://gunrock.github.io.

[5] Karlsruhe Institute of Technology. 2014. OSM Europe Graph. (2014). h�p:
//i11www.iti.uni-karlsruhe.de/ressources/roadgraphs.php.

[6] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens. 2017.
Multi-GPU Graph Analytics. In Proceedings of the 31st IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2017). h�p://escholarship.org/uc/
item/39r145g1

[7] Ryan A. Rossi and Nesreen K. Ahmed. 2015. �e Network Data Repository with
Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Arti�cial Intelligence. 4292–4293. h�p://networkrepository.
com/

[8] Jyothish Soman, Kothapalli Kishore, and P J Narayanan. 2010. A Fast GPU
Algorithm for Graph Connectivity. In 24th IEEE International Symposium on
Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW 2010).
1–8. DOI:h�p://dx.doi.org/10.1109/IPDPSW.2010.5470817

[9] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[10] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. 2013.
Asynchronous Large-Scale Graph Processing Made Easy. In CIDR 2013, Sixth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings. h�p://www.cidrdb.org/cidr2013/Papers/
CIDR13 Paper58.pdf

http://dx.doi.org/10.1145/3018743.3018756
http://www.cise.ufl.edu/research/sparse/matrices
http://dx.doi.org/10.1145/2807591.2807594
http://gunrock.github.io
http://i11www.iti.uni-karlsruhe.de/ressources/roadgraphs.php
http://i11www.iti.uni-karlsruhe.de/ressources/roadgraphs.php
http://escholarship.org/uc/item/39r145g1
http://escholarship.org/uc/item/39r145g1
http://networkrepository.com/
http://networkrepository.com/
http://dx.doi.org/10.1109/IPDPSW.2010.5470817
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf

	Abstract
	1 Introduction
	2 Analysis of synchronous frameworks
	3 Analysis of asynchronous frameworks
	4 Experiments
	5 Future hardware
	References

